\(\int \sec ^2 x dx = \tan x + c\\
\int cosec ^2 x dx = \cot x + c\\
\int \sec x \tan x dx = \sec x + c\\
\int cosec \cot x dx = -cosec x + c\\
\int \tan x dx = ln|\sec x| + c\\
\int \cot x dx = -ln |cosec x| + c\\
\int \sec x dx = ln |\sec x tan x| + c\\
\int cosec x dx = -ln |cosec x + cot x| + c\\
\)
\(\int (ax+b)^n dx = \frac{1}{a(n+1)}(ax+b)^{n+1}+c\)