TOPIK POPULER
BUAT RUMUS

Daftar Rumus Terbaru

Dilatasi [0, k]

\(= \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\)

Rotasi matriks terhadap pusat P (a,b)

\(= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}\) dimana \(x' = (x-a) \cos \theta - (y-b) \sin \theta + a \\y' = (x-a) \sin \theta + (y-b) \cos \theta + b \)  

Rotasi matriks terhadap pusat 0, (0,0)

\(= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) dimana \(x'= x\cos \theta - y \sin \theta \\y' = x \sin \theta + y \cos \theta\)

Refleksi terhadap y = mx + c dengan m = tan Theta

\(= \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -cos\theta \end{pmatrix} \begin{pmatrix} x \\ y-c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) dimana \(x' = x \cos 2 \theta + (y-c) \sin 2\theta \\ y' = x \sin 2\theta - (y-c) \cos 2\theta + c\)

Refleksi matriks terhadap y=mx dengan m = tan Theta

\(= \begin{pmatrix} \cos \theta & \sin\theta \\ \sin\theta & -cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}\) dimana \(x'=x \cos 2\theta + y sin 2\theta \\ y'= x \sin 2\theta - y \cos 2\theta\)