\(\lim{x\to0}\frac{\sin ax}{ax}=\lim{x\to0}\frac{\tan ax}{ax}=\lim{x\to0}\frac{ax}{\sin ax}= \lim{x\to0}\frac{ax}{\tan ax}=1\\ \lim{x\to0}\frac{\sin ax}{bx}=\lim{x\to0}\frac{\tan ax}{bx}=\lim{x\to0}\frac{ax}{\sin bx}= \lim{x\to0}\frac{ax}{\tan bx}=\frac{a}{b} \)
Jika a < p maka L = \(-\infty\)
Jika a = p maka L = \(\frac{b-q}{2\sqrt{a}}\)
Jika a > p maka L = \(\infty\)
Jika a < p maka L = \(-\infty\)
Jika a = p maka L = 0
Jika a > p maka L = \(-\infty\)
Jika n < m maka L = 0
Jika n = m maka L = \(\frac{a}{p}\)
Jika n > m maka L = \(\infty\)
Rumus di atas berlaku jika \(f(x)=\frac{h(x)}{g(x)}\) dimana:
\(h(x)=(x-a)k_1(x)\\
g(x)=(x-a)k_2(x)\\
\)